NixCore X1 Documentation

NIXD01001
Revision 1.6 - June 2016

NixCore Website:
http://nixcores.com

NixCore X1 Product Page:
http://nixcores.com/nixcore_x1.php

Overview

NixCores are a line of computer on module (COM) processor boards that are designed to be

integrated into electronic products. The NixCore line of processors are designed to be easy to
use as the primary core processor of a product, or as an add on module to enable wireless
networking to an existing product.

The NixCore X1 is the initial offering from NixCore and contains a 360MHz MIPS processor,
32MB of SDRAM and 8MB of FLASH. The NixCore X1 has an integrated WiFi module and

Ethernet PHY as well as up to 24 GPIO lines that can be controlled from a user application. The

NixCore X1 runs a full Linux system and images are provided on the http://nixcores.com

website.

Default user: root. Password: root

Features
e 360MHz MIPS CPU e JTAG
e OpenWRT Linux Firmware builds e 802.11g integrated WiFi
e LEDE Linux Firmware builds e 10/100M Ethernet PHY
e Linux Kernel 3.18 e Full TCP/IP/UDP stack
e 8MB Flash e HTTP server
e 32MB RAM e SSL/TLS Support
e 2x UART e Documented, source code, pin
e 24 GPIO outs, diagrams, PCB footprints
e I2C e Fully open source toolchain
e I2S provided for both Windows and
e SPI Linux
e Supported by Arduino IDE on
Windows or Linux

http://nixcores.com/
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/nixcore_x1.php
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/
http://nixcores.com/

Table of Contents

Table of Contents

OVEIVIBW. ...ttt ettt et e e e e e e e e e e e e e e e e e eann e e e e eeeeennnnnns 1
== 100] £ 1
Table of CoONtENES.......cooeeie e 2
1. RT5350 Functional Block Diagram................eeeeiiiiiiiiiiiiiiiiiiiiineeeeeeeeae 4
... 4
A 1= YT o] 1o o 1 5
2.1 NixCore X1 Pin Header:..........ouviuuuiiiiiiiiii e, 5
2.2 Pin LIStING: . .ceeeeiiiii e 5
3. Maximum Ratings and Operating Conditions.............ccccceeeiiiiiiiieeeennn. 7
4. NixCore X1 Memory & FLASH.ouuiiiiiiieece e, 8
4.1 NixCore X1 Memory Map:.......cooeeiiiiiiiaieiiiieeei e 8
4.2 FLASH Map of NiXCOre X1 oo 8
ST o (0Tt~ o S 9
6. Connection Diagram.........ccccceiiiiiiiiiiiiieeee e 9
480 e o] e =1 o 1 10
7.1 Compiler on GNU LiNUX:.....ccooiiiiiiieeeeeeeee e 10
7.1.1 Setup OpenWRT ComPiler:.........cooiviiiiiieiiiieiice e 10
7.1.2 OpenWRT with Existing .config..........ccccooveiieeiiiiii, 10
7.1.4 OpenWRT & LEDE .config Options:........ccccuviiiiiiiiiiiiieeeeeeeeeeeeeeen 11
7.1.5Using BUIldroot:...........uuiiiiiiiiiiiiiiieee e 12
7.1.6 Buildroot .config OpltionS:..........ccccuuiiiiiiiiiieeeeee e 12
7.2 Compiler on WINAOWS:..........coooiiiiiiiiiicccee e e 12
7.3 Root File System and Library Linking Overview:...............ccccccvvnnnees 13
7.4 Building RFS and Libraries for NixCore X1:......ccoooiiiiiiiiiiiiiiieees 13
7.4.1 LEDE/OpenWRT BUild:.........oueiiiiiiiiieeeeeee e 13
7.4.2 BUildroot BUild:.........cooiiiieiiieeeeeeeeee e 14
7.4.3 Manual RFS BUIld:........cooooiiiiiiiiiieeeee e 14
8. GPIO PiNS...uiiiiiiiiiiiieieee ettt e e 14
8.1 GPIO Folder StruCtUre:.........cccuiiiiiiiiiiieeeee e 15
T2 1o T T =Yoo o 15
8.3 Pin CONtroli...ccoeeiiiieiccee oo 15
8.4 PINS AVailable:.......oooeiiiieee e 16
8.5 Exporting Additional PiNS:..........coooiiiiiiiiiiieeeee e 16
8.6 UNexXporting PiNS:......cooc i 16
. U R . e ———— 17
10, 12C e e e e e 18
LS T 18

11.3 SPIUSAQE:...coiiiiiiieee ettt 19
11.4 More SPI Information:...........coouiiiiiiie e 19
(2T TR 20
12.1 Connecting to an existing network:............ccccccviieeiiiiiiiiiee e, 20
12.2 Creating a new Access Point:...........oooiiiiiiiiiiiieeee e 20
12.3 Wireless hardware Control:...........coovvuniiiiiiiiiie e 21
12.4 Manual control of wifi connection:..............ccoooiiiiiiiiiiie, 21
12.5 Manual control of wifi NetWOrK:............coieiiiiiieii e, 21
12.6 Advanced CONEIOli..........viieeeee e 22
L = (g 1= 4 g =) S 22
L Bt B 7o o o T=Tox (o] o F PR 22
LT [0 (=4 £=Tod =S 22
13.3 Static configuration:.............eiioi i 22
T34 DHCP SEIVEL ... et 23
13.5 Controlling the NetWOrK:............oooviiiiiiii e 23
13.6 More INformation:..........coooiiiieie e 24
14, NIt SCIIPLS. .o 24
14.1 Enable/Disable an init SCripti.........ouuiiiiiiiiii 24
15. Installing new LEDE/OpenWRT Packages..........ccccuvveveiiiiieiiiinnnnnns 24
151 Internetinstall............cooormiii e 25
15.2 LoCAl INSaAl.....cceeniiee e 25
16. Contact Information.............cooooeeiiiii e 26

1. RT5350 Functional Block Diagram

Functional Block Diagram

40/20 MHz S T
Crystall #| Clock/Timer/Reset/PLL
Lo SDRAM/ .
L) > Controller —> 16bit SDRAM
~~ | | UART Full+Lite ? UART Interface
LN 802.11n 802.11n MIPS 24KEc
1TIR TR |y @6OMHZ | 0SB 20
2.4 GHz MAC [T 7 32K I-Cache R Hosl/Device PHY ——> USB 2.0 Interface
RF BEP 16K D-Cache
Ed Fc —— EEPROM/Control
Ed s ——> Audio Interface
Fast Ethernet Switch
ol 1]2]13]24 > SPI —3sLiC
FE % T 1T 1
Transform o = PCM —> Codec
~>| External Interface [GPIO/LED

2. Pin Description

NixCore X1 Documentation - 1.6 — NIXD01001

Alt Function

2.1 NixCore X1 Pin Header:

Normal Function
JTAG_TRSTN/GPIO21
JTAG_TCLKI/GPIO20
JTAG_TMS/GPIO19
12C_DATIGPIO1
3.3V

ETH4_RX-
ETH4_TX-

GNDO

UsB D+

GND1

PCMDRX/CTS_N/GPIO13 DSR_N/GPIO13

PCMFS/RTS_N/GPIO11
WDT_RST

BT_ACT
PCMCLK/TXDIGPIOA2

1285DI/GPIO10
12SDOIGPIOS

2.2 Pin Listing:

DTR_N/GPIO11
SPI_CS1/GPIO27
ETHO_LEDIGPIOZ22
DCD_N/GPIO12
1.8V

RXD/GPIO10
CTS_N/GPIO9
GND2

RX2/GPIO16

Pin X-# Pin Name
1 JTAG_TRSTN/GPIO21

2 JTAG_TDO/GPIO17

3 JTAG_TCLK/GPIO20

4 GPIOO

5 JTAG_TMS/GPIO19

6 JTAG_TDI/GPIO18

7 12C_DAT/GPIO1

Pin

0 o~ W =

-
—-

15
17
19
21
23
25
27
29
3
33
35
37
39

Function

JTAG TRST

JTAG TDO

JTAG CLK

JTAG TMS

JTAG TDI

12C Data

Normal Function Alt Function
JTAG_TDOIGPIO17
GPIOO
JTAD_TDIGPIO18
12C_CLK/GPIO2
3.3V

ETH4_RX+
ETH4_Tx+

GND5

USE D-

GND4
ETH2_LEDIGPIO24
ETH4_LEDIGPIOZ26
RIN/IGPIO14
ETH3_LEDIGPIO25
ETH1_LEDIGPIO23
GND3
RTS_N/GPIO7
TXDIGPIO8
MCS1_N
TX2/GPIO15

Power
Gnd
GPIO

BT_FREQ

BT_ANT
PCMDTX/RXD/GPIO14
BT_WACT

BT_STAT

I2SCLK/GPIOT
12SWSIGPIO8
REFCLKO_OUT

GPIO Alt Function

GPIO0
GPIO19
GPIO18

GPIO1

5 of 26

8 12C_CLK/GPI02
9 3.3V

10 3.3V

11 ETH4_RX-
12 ETH4_RX+
13 ETH4_TX-
14 ETH4_TX+
15 GNDO

16 GND5

17 USB D+

18 USB D-

19 GND1

20 GND4

21 DSR_N/GPIO13
22 ETH2_LED/GPIO24
23 DTR_N/GPIO11

24 ETH4_LED/GPIO26
25 SPI_CS1/GPIO27
26 RIN/GPIO14

27 ETHO_LED/GPIO22
28 ETH3_LED/GPIO25
29 DCD_N/GPIO12

30 ETH1_LED/GPIO23

31 1.8V

32 GND3

33 RXD/GPIO10
34 RTS_N/GPIO7
35 CTS_N/GPIO9
36 TXD/GPIO8

37 GND2

38 MCS1_N

I12C Clock GPIO2
3.3v

3.3v

Ethernet 4 RX Negative

Ethernet 4 RX Positive

Ethernet 4 TX Negative

Ethernet 4 TX Positive

Ground

Ground

USB Data Positive

USB Data Negative

Ground

Ground

UART1 DSR GPIO13
Ethernet 2 LED GP1024
UART1 DTR GPIO11
Ethernet 4 LED GPI1026
SPI CS1 GPI1027
UART1 RIN GPIO14
Ethernet O LED GPI1022
Ethernet 3 LED GPI1025
UART1 DCD GPI012
Ethernet 1 LED GPI1023
Ethernet 1.8v

Ground

UART1 RX GPIO10
UART1 RTS GPI0O7

UART1 CTS GPIO9

UART1 TX GPIO8

Ground

PCMDRX/CTS_N
BT_FREQ
PCMFS/RTS_N
BT_ANT
WDT_RST
PCMDTX/RXD
BT_ACT

BT _WACT
PCMCLK/TXD
BT _STAT

12SSDI
12SCLK
12SDO
12SWS

REFCLKO_OUT

39 RX2/GPIO16 UART2 RX GPIO16

40 TX2/GPIO15 UART2 TX GPIO15

Reference RT5350 Datasheet “DSRT5350 V1.0” section “1.3 Pin Sharing Scheme” for function
and register settings.

3. Maximum Ratings and Operating Conditions

Absolute Maximum Ratings:

SUPPIY VORAGE ..o 36V
VCC 10 VCC DECOUPIE. ... e -0.3t0o +0.3V
Input, Output or /O Voltage..........oooiiiiiii e GND -0.3 V to Vcc+0.3 V

(Pins are NOT 5V tolerant, exceeding the I/O Voltage can result in damage to the processor)

Thermal Information:
Thermal characteristics without external heat sink in still air conditions 36.4 °C /W

Operating Conditions:

Temperature Range.o -10to 55 °C

Core SUPPly VoaGE. .. . e 1.2V +/- 5%

1/O SUPPIY VORAGE ... 3.3V +/-10%

Logic Levels and I/O Current:

LOGIC HIGN e 20V
10T T o 0.8V
High Level Output Curmrento e 18 mA
Low Level Output Current ... 10 mA

Operating Power @ 3.3v
WIiFi Enabled Typical ..o e 1.0W
WIiFi Disabled TypICal ... e 0.74W

NixCore X1 Documentation - 1.6 — NIXD01001

4. NixCore X1 Memory & FLASH

4.1 NixCore X1 Memory Map:

Reference RT5350 Datasheet “DSRT5350 _V1.0” section “3.2 Memory Map Summary” for
register settings and addresses

4.2 FLASH Map of NixCore X1:

uboot

uboot-env

OpenWRT factory

OpenWRT OS

0x000000

0x030000

0x040000

0x050000

0x800000

8 of 26

NixCore X1 Documentation - 1.6 — NIXD01001

5. Processor

The primary processor of the NixCore X1 is a Ralink RT5350 360 MHz MIPS24KEc SOC
manufactured by Mediatek, part number RT5350F. The RT5350 includes all peripheral
hardware and processor core. The NixCore X1 pairs the RT5350 with 8MB of
S25FL064K/M25P80 compatible FLASH and 32MB of EtronTech EM63A165TS-6G DRAM.

RT5350 information:

e https://wikidevi.com/wiki/Ralink_RT5350
8MB FLASH information:

e http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf

e http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
32MB RAM information:

e http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf

6. Connection Diagram

_

IIIIIIIIIIHIIII
__H_
|

9 of 26

http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.etron.com/manager/uploads/EM63A165TS_v1.4.pdf
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p80-vmc6g
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
http://www.spansion.com/Support/Datasheets/S25FL064K_00.pdf
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350
https://wikidevi.com/wiki/Ralink_RT5350

7. Toolchain

7.1 Compiler on GNU Linux:

Software is developed on GNU Linux using GCC as the compiler and either uClibc or musl C
Library. Toolchains can be built using a provided .config file for OpenWRT (https://openwrt.org/),
LEDE Project, or using Buildroot (http://buildroot.uclibc.org/)

7.1.1 Setup OpenWRT Compiler:

The latest OpenWRT release is 15.056 Chaos Calmer. This OpenWRT release does not include
support for NixCore X1. We are providing all files needed to get an OpenWRT 15.05 CC build
for NixCore X1 as an external package. These files must be copied into an OpenWRT source
folder before the system can be built.

OpenWRT 15.05 Chaos Calmer source code can be downloaded using git:
git clone git://git.openwrt.org/15.05/openwrt.git

We have provided a ZIP file on the NixCore X1 product page with all libraries, targets, files and
configurations need to get a NixCore OpenWRT 15.05 CC image built. We have also provided
a ‘setup.sh’ bash script which will copy all files to the correct place within a local copy of the
OpenWRT 15.05 branch. It is mandatory to run this ‘setup.sh’ script from within the
‘openwrt_files’ directory to correctly copy the NixCore files.

Depending on where the OpenWRT source files are located, a single variable in the ‘setup.sh’
script will have to be updated.

Modify the OPENWRT _DIR variable at the top of ‘setup.sh’ script to point to the location of the
OpenWRT branch. By default the script assumes that the source is in a directory named
"openwrt" one level up from where it is executed from.

Custom location example:
OPENWRT_DIR="/home/USER/openwrt_branch_XXX"

7.1.2 OpenWRT with Existing .config

NixCore provides config files that contain all the settings for branch 15.05 Chaos Calmer of
OpenWRT, requiring very little setup by the end user. To compile OpenWRT using a config file
on the NixCore X1 product page copy the file to the OpenWRT directory and rename it ‘.config’.

http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/

Compile OpwnWRT on your machine with the command “make -j X” where X is the number of
concurrent threads you want to run. Usually the number of threads should be 2 times the
number of CPU cores you have; 4 CPU cores X=8, 1 CPU core X=2. NOTE: Compiling
OpenWRT takes a LONG time.

After the system is compiled you will have a GCC compiler for the NixCore located under the
‘IYOUR_OPEWNWRT_DIR]/staging_dir/toolchain-mipsel_24kec+dsp_gcc-X.X-linaro_uClibc-
XX XX.X/bin/” (Where Xs are replaced with the GCC and uClibc version nhumbers). Binaries
should be prefixed with “mipsel-openwrt-linux-uclibc-".

7.1.3 LEDE Project Compiler

The NixCore X1 is fully supported in the LEDE Project git trunk, this means no external files are
required to build a full NixCore toolchain. The LEDE project source code can be downloaded
using git:

git clone https://qgit.lede-project.org/source.git

NixCore provides config files that contain all the settings for LEDE, requiring very little setup by
the end user. To compile LEDE using a config file on the NixCore X1 product page copy the file
to the LEDE directory and rename it ‘.config’.

Compile LEDE on your machine with the command “make -j X” where X is the number of
concurrent threads you want to run. Usually the number of threads should be 2 times the
number of CPU cores you have; 4 CPU cores X=8, 1 CPU core X=2. NOTE: Compiling LEDE
takes a LONG time.

After the system is compiled you will have a GCC compiler for the NixCore located under the
‘lYOUR_LEDE_DIR]/staging_dir/toolchain-mipsel_24kec+dsp_gcc-X.X_musl-X.X.XX.X/bin/”
(Where Xs are replaced with the GCC and Musl version numbers). Binaries should be prefixed
with “mipsel-openwrt-linux-musl-".

7.1.4 OpenWRT & LEDE .config Options:

If you do not want to use a .config file provided by NixCore, manual selection of the following
settings will build a toolchain compatible with the NixCore X1 for both OpenWRT and LEDE

Target System: Ralink RT288x/RT3xxx
Subtarget: RT3x5x/RT5350 based boards
Target Profile: NixcoreX1

7.1.5 Using Buildroot:

NixCore provides config files that contain all the settings for Buildroot, requiring very little setup
by the end user. To compile Buildroot using a config file on the NixCore X1 product page copy
the file to the Buildroot directory and rename it ‘.config’.

Compile buildroot on your machine by running ‘make’.

After compilation is done, the toolchain for MIPS should be located under the
‘[YOUR_BUIDLROOT_DIR]J/output/host/usr/bin/”. Binaries should be prefixed with “mipsel-
buildroot-linux-uclibc-"

7.1.6 Buildroot .config options:

If you can not use a .config file provided by NixCore, manual selection of the following settings
will build a toolchain compatible with the NixCore X1

Architecture: MIPS Little Endian
Binary: ELF

Architecture Variant: mips 32r2
Use Soft-float: Yes [*]

Enable C++ Support: Yes [*]

OpenWRT Kernel Headers: 3.18
LEDE Kernel Headers: 4.4

OpenWRT C Library: uClibc
LEDE C Library: musl

7.2 Compiler on Windows:

Software to run on the NixCore X1 is developed on Windows using GCC and the uClibc C
Library. GCC and associated applications are provided as native Windows binaries from Mentor
Graphics as part of their Sourcery CodeBench Lite product and MinGW.

Download the IA32 Windows Installer from the following link:

https://sourcery.mentor.com/GNUToolchain/subscription31307?lite=MIPS

Install the I1A32 Windows Installer with all default options. Ensure that the option for adding the
location of the tools to the PATH is enabled. Once installed the GCC toolchain should be located
in c:\mgc\embedded\codebench\bin\ and typing “mips-linux-gnu-gcc.exe -v’ in a command
window should show version “gcc version 4.9.2” (or similar if there is a more recent download).

https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS
https://sourcery.mentor.com/GNUToolchain/subscription3130?lite=MIPS

7.3 Root File System and Library Linking Overview:

The Root File System (RFS) is a directory that holds all of the files for the embedded system but
it is located in a folder on the host (“build”) machine. The RFS directory should include usr/,
etc/, bin/, etc directories. These directories contain header files and binary builds of libraries
that will be used on the target embedded system. Since they are designed to execute on the
embedded system the binaries are built with the cross compiler and will only work on the target
architecture. When building new target applications it is required to link to libraries that are
matched with the same architecture. This means that if you are building a MIPS application,
you must point gcc to the location of any MIPS binaries, not the binaries for your “build” machine
(most likely x86/amd64).

Example: The rxsrvr.bin application for transferring data across a serial link requires the Z
Library for CRC. While the host (“build”) machine (for example a desktop) has a libz.a binary

in /usr/lib/ it is compiled for the host architecture, not NixCore X1 MIPS. To correctly build the
rxsrvr.bin application we need to have a MIPS binary for libz and point the MIPS gcc compiler to
that location.

7.4 Building RFS and Libraries for NixCore X1:

There are a number of ways to build an RFS for the NixCore X1, they are listed here from
easiest to most difficult:

e Build LEDE/OpenWRT for NixCore X1

e Build Buildroot for MIPS 32r2

e Build manually

7.4.1 LEDE/OpenWRT Build:

LEDE is the default Linux image for the NixCore X1 and as such any libraries built from an
official config file will be available to the user application. OpenWRT is similar to LEDE and is
supported the same way as LEDE. Config files for LEDE and OpenWRT are available on the
NixCore X1 product page. Steps to build the LEDE/OpenWRT image include:

1. Download the LEDE source or OpenWRT 15.05 branch
a. git clone https://git.lede-project.org/source.git
b. git clone git://git.openwrt.org/15.05/openwrt.git
Download a .config file for NixCore X1: http://nixcores.com/nixcore_x1.php#downloads
Copy the .config to the root directory of the LEDE or OpenWRT branch
run “make menuconfig” to select additional libraries you require
Save the .config file from menuconfig
Run “make -j X” where X is the number of concurrent threads you want to run

2

This sequence will build LEDE/OpenWRT and will generate a RFS in the source folder under
“staging_dir/target-mipsel_24kec+dsp_zzzz-X. XX.X/” where zzzzz is the C library (uClibc or

http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads

musl) and X.XX.X will match the version of the library. Ensure that any new libraries created by
the build are copied to the same RFS directory on the target device.

Link against the binaries on the build machine by adding an include path to GCC:
-I [PATH_TO_LEDE]/staging_dir/target-mipsel_24kec+dsp_zzzzz-X.XX.X/

7.4.2 Buildroot Build:

Buildroot is actually the basis for the LEDE build system, and can generate toolchains and an
RFS for embedded systems. Since Buildroot supports the MIPS 32r2 LE processor of the
NixCore X1 is is possible to build an RFS from Buildroot. Steps to build the Buildroot RFS
include:

1. Download Buildroot: http://buildroot.uclibc.org/download.html

2. Download a Buildroot .config files for NixCore X1:
http://nixcores.com/nixcore_x1.php#downloads

a. Optional: Follow the “Compiler on GNU Linux” section to generate a custom X1

compatible Buildroot config for mips32r2

Run ‘make menuconfig’ to select additional libraries you require
Ensure that at least one “Filesystem image” options is selected
The number of concurrent threads to execute is located in the “Build options” menu
Save the .config file upon exiting
Execute “make”

N Ok®

This sequence will build Buildroot and generate a RFS in the Buildroot folder under
“output/target/”. Ensure that any new libraries created by the build are copied to the same RFS
directory on the target device.

Link against the binaries on the build machine by adding an include path to GCC:
-| [PATH_TO_BUILDROOT]/output/target/

7.4.3 Manual RFS Build:

As with any embedded system as long as library and binaries are built for the target architecture
any compiler can be used. This means that individual libraries can be built and linked via
Makefiles.

8. GPIO Pins

GPIO pins are accessed from the Linux system using the SYSFS interface
(https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt). GPIO pins are controlled by

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://nixcores.com/nixcore_x1.php#downloads
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html
http://buildroot.uclibc.org/download.html

virtual “files” in a virtual file system. These files are read from and written to in exactly the same
method as any normal file, including from C using FILE * pointers and from the shell using “echo
>” syntax.

GPIO Data location: /sys/class/gpio/

Each exported GPIO pin is listed as a folder in the sysfs folder. Under each folder are a number
of files, each related to a function of the GPIO pin

8.1 GPIO Folder structure:

active_low - Binay value for if the output logic is active low.
edge - String for edge detection, default “none”
value - Binary value for the output logic level of the GPIO, “1” or “0”

direction - String either “in” or “out” representing the input or output function of the pin

An excellent overview of how to control GPIO functions via sysfs is provided is the Kernel
document “GPIO Sysfs Interface for Userspace” found at:
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

8.2 Pin Direction:

GPIO pins in the NixCore X1 can be configured to be either inputs or outputs. Inputs read in
binary data from the line and outputs drive a logic signal on a line. By default all GPIO lines in

the system are inputs. To change direction of a GPIO pin the string “in” or “out” must be written
to the direction virtual file within the GPIO pin folder.

Example from shell script, make GPIO pin 27 an output:
root@NixCoreX1:/# echo "out" > /sys/class/gpio/gpio27/direction

8.3 Pin Control:

The value of an output pin can be controlled by writing a single character ‘1’ or ‘0’ to the ‘value’
virtual file in the GPIO pin folder. Values can be determined by reading the same virtual file
ASCII value.

Example from shell script, assert logic high to GPIO pin 27:
root@NixCoreX1:/# echo "1" > /sys/class/gpio/gpio27/value

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

8.4 Pins Available:

On the stock firmware, by default there are 8 GPIO pins automatically available for use. GPIOs
enabled on firmware by default include:

e GPIOO

e GPIO17-GPIO21

e GPIO26-GPIO27

The RT5350 SoC shares GPIO functions with some communication functions such as UART
and SPI. Atotal of 24 GPIO pins can be enabled from the system however enabling some pins
as GPIO will disable some communication.

The following pins can be enabled using the “export” sysfs function. The GPIO pin numbers are
grouped with the communication bus that they use.

GPIO Pins Communication Bus
GPIO2 &3 I’C Bus

GPIO 7-14 UART1, PCM, I*)S
GPIO 15 & 16 UART2 - Serial console
GPIO 22-25 Software SPI

8.5 Exporting Additional Pins:

The pins listed above require an ‘export’ step to make them available to userspace applications.
Exporting is done by writing a GPIO value to the “export” file in the GPIO virtual file system.
This can be done with an application or a shell script.

Example, export GPIO 25 to userspace:
e Ensure that the SPI driver has not claimed GPIO 25 (/dev/spidev0.1 should not exist)
o Disable SPI driver: rmmod spi_gpio_custom
o root@NixCoreX1:/# echo "25" > /sys/class/gpio/export
e Anew gpio25 folder will be visible

8.6 Unexporting Pins:

Linux provides the ability to “unexport” a GPIO pin and disassociate it from the GPIO driver.
This allows the pins to be used for other functions such as communication hardware.

Unexporting is the same as exporting however the GPIO value is written to the “unexport” virtual
file rather than the “export” file.

Example, unexport GPIO 25:
o root@NixCoreX1:/# echo "25" > /sys/class/gpio/unexport

NOTE: Automatically exported GPIOs (0,17-21,26,27) can NOT be unexported as they are
associated with the GPIO hardware in the Device Tree. For advanced users, an explanation of
Device Tree can be found at http://www.devicetree.org/Device_Tree_Usage and the NixCore X1
dts file in the OpwnWRT directory (target/linux/ramips/dts/NIXCORE-X1.dts)

9. UART

The Nixcore X1 processor board is equipped with a single Full-Featured UART and a single
UART-lite, both of which generate 3.3v level digital signals. These two serial UARTSs can
support almost all common serial speeds up to 345600 and have been tested up to 115200
bps. The serial hardware can be access from the Linux system by accessing device file
/dev/ttySO (Full-featured UART) and /dev/ttyS1 (UARTHlite).

Full-featured UART:
8-pins (RIN, /DSR, /DCD, /DTR, RXD, /CTS, TXD, /RTS)

e 3.3v logic level inputs/outputs

e Exported to userspace by default

e Fully supported by Linux 3.18 kernel
UART-lite:

e 2-pins (RXD, TXD)

3.3v logic level inputs/outputs

Exported to userspace by default

Used for serial console by default

Used for early Kernel messages

Fully supported by Linux 3.18 kernel

Default uboot serial console

Uboot support for Kermit serial firmware update

LEDE/OpenWRT serial documentation: http://wiki.openwrt.org/doc/hardware/port.serial

Linux serial programming HOW-TO using termios: http://tidp.org/HOWTO/Serial-Programming-
HOWTO/

http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://tldp.org/HOWTO/Serial-Programming-HOWTO/
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://wiki.openwrt.org/doc/hardware/port.serial
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage

10. 12C

The RT5350 SoC has a single 12C PHY hardware which is supported in the Linux 3.18 kernel.
The 12C hardware is enabled by default in firmware builds and available in userspace as
/dev/i2c-0. The I2C hardware fully supports the i2c-dev interface specification and can be
accessed with standard file reads and writes. Since 12C is an addressed bus, ioctrl support
exists for changing the slave number as well as other parameters.

Detailed information with examples is provided in the Linux Kernel i2c-dev documentation:
https://www.kernel.org/doc/Documentation/i2c/dev-interface

11. SPI

SPI functions are implemented via software based GPIO SPI Linux Kernel driver. The RT5350
SOC has a single hardware based SPI hardware physical driver however it is used for the
FLASH interface. The hardware based chip select 1 (CS1) line is routed to the NixCore X1
header if you would like to use it to control hardware.

By default SPI is implemented on GPIO lines 22 through 25 of the NixCore X1. The software
based SPI is routed to pins pin27, pin30, pin22, and pin28, on the NixCore X1 header. The
pinout is as follows:

SPI Function GPIO Pin X1 Header Pin
CLK gpio22 X1-27
MOSI gpio23 X1-30
MISO gpio24 X1-22
CS gpio25 X1-28

11.1 Enabling the SPI driver:

The SPI driver is not installed by default on stock firmware is must be enabled via a system
command. This command can be entered manually or added to the NixCore startup script to be
run at boot time.

https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface

To enable the spi device the spi-gpio-custom driver must be installed with the correct
parameters. The following is the command to install the driver with the default gpio pins running
at 100KHz.

root@NixCoreX1:/# insmod spi-gpio-custom bus0=1,22,23,24,0,100000,25

This will create a new device node at /dev/spi1.0

11.2 Disabling the SPI driver:

The gpio-spi-custom driver can be removed from the system with the following command:
“rmmod spi_gpio_custom”. Once the driver is removed the pins are released to the system and
can be used for other functions such as GPIO.

11.3 SPI Usage:

The SPI hardware is exposed to user space applications as /dev/spi1.0 and can be written to
and read from in the same manner as data files in Linux.

Example: Send a byte of data out on the SPI bus:
FILE * fp;
fp = fopen("/dev/spi1.0","w");
if(fp)
{
fwrite("'A',1,1,fp);
fclose(fp);
Jelsef
printf("Can't open hardware\n");

}

11.4 More SPI Information:

More information about the SPI GPIO driver can be found on the author’s site:
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/

More information on the spidev interface can be found in the Kernel Documentation:
https://www.kernel.org/doc/Documentation/spi/spidev

https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/
https://randomcoderdude.wordpress.com/2013/08/15/spi-over-gpio-in-openwrt/

12 WiFi

Wifi access is provided by the LEDE/OpenWRT system. For a full discussion of the WiFi
subsystem of LEDE/OpenWRT, please see “Wireless Configuration” of the OpenWRT manual at
http://wiki.openwrt.org/doc/uci/wireless

NixCore has developed scripts to manipulate the LEDE/OpenWRT WiFi system from the system
console. Bash scripts have been provided to both connect to an existing wireless network as
well as generate a new wireless access point. These script can be called from user applications
as well as web based CGI scripts.

12.1 Connecting to an existing network:

The wifi_connect.sh script is provided to connect a NixCore X1 to an existing Wifi network. The
encryption supported is WEP,WPA,WPA2,and WPA Enterprise.

wifi_connect.sh SSID_NAME [ENCRYPTION_TYPE] [ENCRYPTION_KEY]
e SSID NAME - Required. Name of the base station to connect to
ENCRYPTION_TYPE - Optional. Mode value for encryption as per the OpwnWRT WPA

Modes table: http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
e ENCRYPTION_KEY - Optional. Key value for encryption

If ENCRPYTION_TYPE is not passed, the encryption value will be “none”. If
ENCRYPTION_KEY is not passed the key value will be “none”.

Example, connect to an access point named “TestAP” with WPA2 encryption and key “ABC123”
wifi_connect.sh TestAP psk2 ABC123

Example, connect to an open access point PublicWifi
wifi_connect.sh PublicWifi

12.2 Creating a new Access Point:

The wifi_make_ap.sh script is provided to create new Access Point (AP). The encryption
supported is WEP, WPA, and WPA2.

wifi_make_ap.sh SSID_NAME [ENCRYPTION_TYPE] [ENCRYPTION_KEY] [CHANNEL]
e SSID_NAME - Required. Name of the AP
e ENCRYPTION_TYPE - Optional. Mode value for encryption as per the OpwnWRT WPA
Modes table: http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
e ENCRYPTION_KEY - Optional. Key value for encryption

http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless#wpa_modes
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless

e CHANNEL - Optional. Channel to use for AP

If ENCRPYTION_TYPE is not passed, the encryption value will be “none”. If
ENCRYPTION_KEY is not passed the key value will be “none”. If CHANNEL is not passed the
default will be channel 6.

Example, make an access point named “TestAP” with WPA2 encryption and key “ABC123”
wifi_make_ap.sh TestAP psk2 ABC123

Example, make an open access point PublicWifi
wifi_connect.sh PublicWifi

12.3 Wireless hardware control:

Wireless networking in LEDE/OpenWRT is broken into two sections, Wifi connection
information, and Wifi network information. A network associated with Wifi hardware is created in
LEDE/OpenWRT as wlan0. This network can be connected to any hardware and the hardware
can be in any mode.

The wifi connection is how the hardware communicates with other hardware. The wifi
connection on the NixCore X1 can either be in station mode where it is a client of an access
point, or it can be in AP mode in which it is an access point itself. Regardless of the type of wifi
connection, wlan0 will always be the network that data is sent and received on.

12.4 Manual control of wifi connection:

The wifi connection can be started and stopped manually with the “wifi” command provided by
LEDE/OpenWRT. Running “wifi down” will turn off the wifi hardware on the chip. “wifi on” will
turn on the wifi hardware on the chip.

NOTE: While the wifi command controls the wireless hardware, when the wireless hardware
stops the wlanO stops as well.

12.5 Manual control of wifi network:

While it is unadvisable to control the settings of the network directly, it is possible to keep the
wifi connection alive while stopping the wlan0 network. Since the wlan0 network is a standard
network interface all ifconfig commands are available.

12.6 Advanced control:

The Wifi connection and network are documented in the LEDE/OpenWRT “Wireless
Configuration” wiki page at http://wiki.openwrt.org/doc/uci/wireless. NixCore X1 is configured
with two different network profiles for wireless, depending on what mode the wifi connection is
in; ‘apwan’ for access point mode and ‘wwan’ for station mode. These modes can be found in
/etc/config/inetwork. ‘apwan’ is static with address 192.168.2.1 and dnsmasq DHCP server
enabled. ‘wwan’ is a dhcp client. DHCP server settings are found in /etc/config/dhcp

13. Ethernet

The RT5350 SoC contains hardware for 4 Ethernet PHY drivers as well as an integrated switch
for routing between the Ethernet drivers. The NixCore X1 exposes Ethernet hardware #4 to the
header connector.

13.1 Connection

The four connections for Ethernet are RX +/- as well as TX +/-. The RX/TX signals can not be
connected directly to an Ethernet RJ-45 jack and require Ethernet magnetics to decouple the
board from the Ethernet network. Many products are available with integrated decoupling
magnetics:

Magnetics and RJ45 Jacks:
e MagJack - http://belfuse.com/ethernet/magjack-connector-modules/
e Sparkfun RJ45 - https://www.sparkfun.com/products/8534
e Pulse LAN Magnetics - http://www.pulseelectronics.com/products/lan

13.2 Interface:

The RT5350 network hardware is fully supported by the Linux kernel and Ethernet #4 is
available to userspace applications as eth0. A network “lan” is created and a virtual interface
eth0.1 is created to attach to the network. Interface eth0.1 should be used as the interface to
the Ethernet hardware on the SoC. By default eth0.1 is enabled as a DHCP client for a network.
It is possible to enable eth0.1 to have a static IP address or enable eth0.1 to be a DHCP server
for a network.

13.3 Static configuration:

Settings for IP assignment for eth0.1 are located in the /etc/config/network file. The section “lan”
is what controls the IP address assignment. By default the “option proto” setting will be “dhcp”
however it can be changed to “static” for a fixed IP assignment. After changing “option proto” to

http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
http://www.pulseelectronics.com/products/lan
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
https://www.sparkfun.com/products/8534
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://belfuse.com/ethernet/magjack-connector-modules/
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless
http://wiki.openwrt.org/doc/uci/wireless

“static” one must set an IP address and netmask for the interface. These options are “option
ipaddr” and “option netmask”. A correct static IP interface section looks as follows:

config interface 'lan'
option ifname 'eth0.1"
option proto 'static'
option ipaddr '192.168.2.100'
option netmask '255.255.255.0'

13.4 DHCP Server:

To enable a DHCP server on eth0.1 requires the interface to be set at a static IP address. How
to set a static IP is listed in this document under “Static configuration”.

Once eth0.1 has been configured for static IP address the DHCP server needs to be attached to
the “lan” network. This configuration is done in the /etc/config/dhcp file on the NixCore. Within
the dhcp file there is a “config dhcp ‘lan’ “ section. This section is disabled by default since the
Ethernet interface is defined to be a DHCP client. The option to disable the section is “option
ignore ‘1’ “, remove this line or place a # symbol in front of it to comment it out. A full DHCP
configuration is below:

config dhcp 'lan’
option interface 'lan’
option start 100’
option limit '150'
option leasetime '12h'
option dhcpv6 'server'
option ra 'server'
#option ignore "1'

13.5 Controlling the network:

If a user changes any information in a /etc/config/ file related to the network, the new
configuration must be reloaded into the networking subsystem. LEDE/OpenWRT provides two
command to reload information into the network using the init.d startup scripts; ‘reload’ and
‘restart’.

The reload command tells the networking system to re-read the /etc/config/network file and
updated the interface. The restart command stops the networking and dhcp server and re-starts
them as if they were started in a boot up. Reload can apply some changes such as IP address
or netmask while restart will include changes to the network or DHCP settings.

13.6 More Information:

The networking subsystem of the NixCore X1 is an unmodified LEDE/OpenWRT system. More
information can be found on the LEDE/OpenWRT “Network Configuration” wiki page at

http://wiki.openwrt.org/doc/uci/network

14. Init Scripts

LEDE/OpenWRT supports a modified init.d startup script boot environment. Startup/shutdown
scripts are located in /etc/init.d/ however these scripts are not executed at boot by default, when
a developer adds a new script it must be “enabled” by the system. This provides the ability of
“enabling” and “disabling” scripts without moving files or dealing with permissions

14.1 Enable/Disable an init script:
All scripts are located in /etc/init.d/ and have support for an ‘enable’ and ‘disable’ command
similar to ‘start’ and ‘stop’.

Enable:

root@NixCoreX1:/# /etc/init.d/SCRIPTNAME enable
Disable:

root@NixCoreX1:/# /etc/init. d/SCRIPTNAME disenable

More information about init scripts can be found on the “Init Scripts” LEDE/OpenWRT wiki page
at http://wiki.openwrt.org/doc/techref/initscripts

14.2 Automatic Startup

The NixCore X1 has a special init script added to the stock image which allows for commands to
be executed at boot time. The script starts after firewall and networking scripts complete and
before the remainder of application layer programs such as uhttpd and dnsmasgq.

Commands can be added to the start and stop sections of /etc/init.d/nixcore

15. Installing new LEDE/OpenWRT Packages

The LEDE/OpenWRT package manager is opkg, itself a fork of ipkg closely resembling
APT/dpkg for Debian Linux. Additional software can be installed from the LEDE or OpenWRT
Chaos Calmer package repositories. Packages can be installed in two ways, from the internet
and from local files.

http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/techref/initscripts
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network
http://wiki.openwrt.org/doc/uci/network

15.1 Internet install

A functional internet connection is required for downloading packages directly from the
LEDE/OpenWRT servers.

LEDE packages can be viewed in a web browser from the following URL:
https://downloads.lede-project.org/snapshots/packages/mips_24kc/
Chaos Calmer 15.05 packages can be viewed in a web browser from the following URL:

https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/

The opkg information files are stored on the LEDE/OpenWRT server, downloading these files
allows opkg to have a list of the latest software available. The package folders enabled for opkg
is located in /etc/opkg/distfeeds.conf, this lists all folders opkg should search for ipk files.
Updating the local package list is is done by running update from a command line as follows:

opkg update
After the Packages.gz and Packages.sig files are downloaded for each enabled package folder
opkg will have a list of all packages on the server. Installing a package from the server is done
by running the following:

opkg install [PACKAGENAME]
Where PACKAGENAME is the short name of the package. The short name of the package is
the string before the underscore * ' in the ipkg file name. As an example, to install the nano
editor from the nano_2.4.1-1_ramips_24kec.ipk file, the command would be

opkg install nano

More information about opkg can be found on the LEDE/OpenWRT opkg wiki page at:

http://wiki.openwrt.org/doc/techref/opkg

15.2 Local Install

LEDE/OpenWRT ipk packages can be installed from a local source without Internet access by
passing the location of the ipk file to the opkg install command as follows:

http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
http://wiki.openwrt.org/doc/techref/opkg
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.openwrt.org/chaos_calmer/15.05/ramips/rt305x/packages/
https://downloads.lede-project.org/snapshots/packages/mips_24kc/

opkg install ../mnt/usbdrive/somepackage.ipk

Since opkg does not have a list of current packages if there is a required dependency that is not
installed in the system issues can arise. This method is suggested for advanced users only.

16. Contact Information

Sales, comments, errata NixCore Admin admin@pnixcores.com

Engineering Support Andrew Gaylo drew@pnixcores.com

17. Revisions

1.0 9/28/2015 Initial revision.

1.1 9/30/2015 Added information on how to install additional OpenWRT files to
support NixCore X1 target.

1.2 10/5/2015 Added default user and password information for device

1.3 10/12/2015 | Added information about opkg. Added note about 5V tolerance
in electrical section. Added power to operating conditions

14 10/14/2015 | Updated Windows toolchain section.

1.5 5/13/2016 Updated formatting and table of contents

1.6 7/11/2016 Added documentation for LEDE project

